(1) Dinitrogen fixation and transformation.
[1] Guo, J. P.; Chen, P.* Interplay of Alkali, Transition Metals, Nitrogen, and Hydrogen in Ammonia Synthesis and Decomposition Reactions. Acc. Chem. Res. 2021, 54, 2434-2444.
[2] Wang, Q. R.; Pan, J.; Guo, J. P.; Hansen, H. A.; Xie, H.; Jiang, L.; Hua, L.; Li, H. Y.; Guan, Y. Q.; Wang, P. K.; Gao, W. B.; Liu, L.; Cao, H. J.; Xiong, Z. T.; Vegge, T.*; Chen, P.* Ternary Ruthenium Complex Hydrides for Ammonia Synthesis Via the Associative Mechanism. Nat. Catal. 2021, 4, 959-967.
[3] Guo, J. P.; Chen, P.* Ammonia History in the Making. Nat. Catal. 2021, 4, 734-735.
[4] Gao, W. B.; Guo, J. P.*; Wang, P. K.; Wang, Q. R.; Chang, F.; Pei, Q. J.; Zhang, W. J.; Liu, L.; Chen, P.* Production of Ammonia Via a Chemical Looping Process Based on Metal Imides as Nitrogen Carriers. Nat. Energy 2018, 3, 1067-1075.
[5] Chang, F.; Guan, Y. Q.; Chang, X. H.; Guo, J. P.*; Wang, P. K.; Gao, W. B.; Wu, G. T.; Zheng, J.; Li, X. G.; Chen, P.* Alkali and Alkaline Earth Hydrides-Driven N2 Activation and Transformation over Mn Nitride Catalyst. J. Am. Chem. Soc. 2018, 140, 14799-14806.
[6] Wang, P. K.; Chang, F.; Gao, W. B.; Guo, J. P.*; Wu, G. T.; He, T.; Chen, P.* Breaking Scaling Relations to Achieve Low-Temperature Ammonia Synthesis through LiH-Mediated Nitrogen Transfer and Hydrogenation. Nat. Chem. 2017, 9, 64-70.
[7] Wang, P.; Xie, H.; Guo, J. P.; Zhao, Z.; Kong, X.; Gao, W.; Chang, F.; He, T.; Wu, G.; Chen, M.; Jiang, L.*; Chen, P.* The Formation of Surface Lithium-Iron Ternary Hydride and Its Function on Catalytic Ammonia Synthesis at Low Temperatures. Angew. Chem. Int. Ed. 2017, 56, 8716-8720.
[8] Guo, J. P.; Wang, P. K.; Wu, G. T.; Wu, A. A.; Hu, D. Q.; Xiong, Z. T.; Wang, J. H.; Yu, P.; Chang, F.; Chen, Z.; Chen, P.* Lithium Imide Synergy with 3d Transition-Metal Nitrides Leading to Unprecedented Catalytic Activities for Ammonia Decomposition. Angew. Chem. Int. Ed. 2015, 54, 2950-2954.