李灿院士研究组利用双共催化剂发展了Pt-PdS/CdS三元光催化剂,在可见光照射下,利用Na2S作为牺牲试剂,产氢量子效率达到93%,这是迄今为止报道的光催化产氢最高的量子效率。该工作作为priority communication发表在近期的《Journal of Catalysis》上(J. Catal., DOI: 10.1016/j.jcat.2009.06.024)。美国C&E News立即进行了a full-page story 的报道。其中,日本东京大学光催化研究专家K. Domen 教授也给予了高度评价,认为该工作提供了一种人工设计高效光催化剂的方法。这是李灿研究组继在光催化剂表面异相结(Angew. Chem. Int. Ed., 120: 1766-1769 2008)和异质结及其光催化制氢性能(J. Am. Chem. Soc., 130: 7176-7177 2008)的研究工作之后在太阳能光催化制氢方面取得的又一进展。
太阳能光催化制氢作为解决能源危机和环境问题的一个重要途径,受到世界各国的高度重视。提高可见光区量子效率是这一领域的研究目标和最大挑战之一。在光催化过程的两个半反应中(电子还原和空穴氧化),氧化半反应被认为是光催化过程的主要瓶颈。李灿院士等人通过精心设计组装光催化剂,在光催化剂 (CdS) 表面共担载还原 (Pt) 和氧化 (PdS) 双组份共催化剂,有效地解决了电子和空穴的分离和传输问题,利用牺牲试剂在可见光照射下取得了93%的产氢量子效率,已经接近自然界光合作用原初过程的量子效率水平。该工作发展了一种高效光催化重整硫化氢溶液制氢的技术,由于氧化共催化剂的担载有效地避免了光催化剂的光腐蚀现象,使该三元催化剂表现出很高的稳定性,显示出重要的工业应用前景。
该工作提出了一种人工模拟光合作用设计高效光催化剂的思路,即通过分别组装合适的氧化和还原双共催化剂在空间上避免光生电荷复合,可以极大地提高光生电荷的分离和传输效率,从而大幅提高量子效率。这对发展太阳能高效光催化剂及光催化制氢和还原CO2过程具有重要指导意义。(文/杨金辉 图/余松华 杨金辉)